Odak Tekniğin Ortaya Çıkmasında Etkili Olabilecek Bazı Faktörlerin Araştırılması: Başarı, Mantıksal Düşünme Yeteneği ve İşlem Tipi Sırası / Study of Some Factors Related to Focused Technique: Physics Achievement, Logical Thinking Skills and Task Sequence

Burak Kağan Temiz, Ahmet Yavuz
1.993 684

Öz


ÖZ

Bu çalışma, birden fazla parçadan oluşan mekanik düzeneklerde ivme bulma problemi için tanımlanan odak tekniğin ortaya çıkmasında etkili olabilecek bazı faktörleri araştırma amacıyla yapılmıştır. Odak teknik; birden fazla parçadan oluşan düzeneklerde, bir parçanın ivmesini hesaplarken sadece o parçaya odaklanılıp diğer parçaların harekete olan etkilerinin göz ardı edildiği, hatalı bir tekniktir. Çalışmada, odak tekniğin, öğrencilerin mekanik konularındaki bilgi eksikliklerden veya mantıksal düşünme yeteneklerindeki sınırlılıklardan kaynaklanmadığı görülmüştür.

Anahtar Kelimeler: Fizik eğitimi, mekanikte problem çözme teknikleri, fizik dersi başarısı, mantıksal düşünme yeteneği, odak teknik.

 

ABSTRACT

This study aims to investigate several factors that involve use of focused technique in calculating acceleration problems for mechanical system consisting of multiple components. In the focused technique that is not correct students focus on only one component and ignore others' effect on motion by calculating acceleration of a component. In this study it is showed that the focused technique is not stem from lack of knowledge in mechanics or limitation related to logical thinking skills.

Keywords: Physics education, problem-solving technics in mechanics, physics achievement, logical thinking skills, focused technique.

 


Anahtar kelimeler


Fizik eğitimi, mekanikte problem çözme teknikleri, fizik dersi başarısı, mantıksal düşünme yeteneği, odak teknik.

Tam metin:

PDF


Referanslar


Bolton, J., & Ross, S. (1997). Developing students’ physics problem-solving skills. Physics Education, 32, 176.

Bosch, M., Chevallard, Y., & Gascon, J. (2005). Science or magic? The use of models and theories in didactics of mathematics. In Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education. Retrieved from http://ermeweb.free.fr/CERME4/CERME4_WG11.pdf

Chevallard, Y. (1997). Familière et problématique, la figure du professeur. Recherches en Didactique des Mathématiques, 17(3), 17–54.

Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: L’approche anthropologique. Presented at the Actes de l’Université d’Eté, La Rochelle-France. Retrieved from http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_ enseignantes.pdf

Chi, M.T.H. (2006). Two approaches to the study of experts’ characteristics. In N. Charness, P.J. Feltovich, R.R. Hoffman, & K.A. Ericsson (Eds.), The Cambridge Handbook Of Expertise And Expert Performance (pp. 21–30). New York, NY: Cambridge University Press.

Çalışkan, S., Selçuk, G. S., & Erol, M. (2012). Instruction of Problem Solving Strategies: Effects on Physics Achievement and Self-Efficacy Beliefs. Journal of Baltic Science Education, 9(1). Retrieved from http://www.scientiasocialis.lt/journals/index.php/jbse/article/view/156

Çalışkan, Serap, Selçuk, G. S., & Erol, M. (2006). Fizik Öğretmen Adaylarının Problem Çözme Davranışlarının Değerlendirilmesi. H.Ü. Eğitim Fakültesi Dergisi (H.U. Journal of Education)., (30), 73–81.

Fabre, M. (1999). Situations-Problèmes et savoir scolaire. Paris: Presse Universitaire de France (PUF).

Geban, Ö., Askar, P., & Özkan, Ï. (1992). Effects of computer simulations and problem-solving approaches on high school students. The Journal of Educational Research, 86(1), 5–10.

Gündüz, Ş. (2008). Fizik Problemlerini Çözme Performansının Teşhise Yönelik Değerlendirilmesinde Bir Model Geliştirilmesi. (Yayınlanmamış Doktora Tezi). Marmara Üniversitesi, İstanbul, Türkiye.

Hobden, P. (1998). The Role of Routine Problem Tasks in Science Teaching. International handbook of science education, 1, 219.

Johnson, M. A., & Lawson, A. E. (1998). What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes? Journal of research in science teaching, 35(1), 89–103.

Johsua, S., & Dupin, J.-J. (1999). Introduction à la didactique des sciences et des mathématiques. Paris: Presse Universitaire de France (PUF).

Jonassen, D. H. (2010). Learning to Solve Problems: A Handbook for Designing Problem-Solving Learning Environments. Routledge.

Karasar, N. (2002). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler. Nobel Yayın Dağıtım.

Kılıç, D., & Sağlam, N. (2009). Öğrencilerin Mantıksal Düşünme Yeteneklerinin Bazı Değişkenler Açısından İncelenmesi, 10(2), 23–38.

Lawson, A. E., Banks, D. L., & Logvin, M. (2006). Self-efficacy, reasoning ability, and achievement in college biology. Journal of Research in Science Teaching, 44(5), 706–724.

Lawson, A. E., & Thompson, L. D. (1988). Formal reasoning ability and misconceptions concerning genetics and natural selection. Journal of Research in Science Teaching, 25(9), 733–746.

Maloney, D. P. (1985). Rule-governed physics: Some novice predictions. European Journal of Science Education, 7(3), 295–306.

McDermott, L. C. (1998). Conceptions des élèves et résolution de problèmes en mécanique. In Des résultats de recherche en didactique de la physique à la formation des maitres. Commission internationnale sur l’enseignement de la physique (ICPE).

McDermott, L. C., Shaffer, P. S., & Somers, M. D. (1994). Research as a guide for teaching introductory mechanics: An illustration in the context of the Atwood’s machine. Am. J. Phys., 62(1), 46–55.

McGinn, M. K., & Boote, D. N. (2003). A first-person perspective on problem solving in a history of mathematics course. Mathematical Thinking and Learning, 5(1), 71–107.

Mestre, J. P., Dufresne, R. J., Gerace, W. J., Hardiman, P. T., & Touger, J. S. (1993). Promoting skilled problem-solving behavior among beginning physics students. Journal of Research in Science Teaching, 30(3), 303– 3

Osborne, R. J., & Gilbert, J. K. (1980). A technique for exploring students’ views of the world. Physics Education, 15, 376.

Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and representing problems. The psychology of problem solving, 3–30.

Reif, F. (1995). Millikan Lecture 1994: Understanding and teaching important scientificthought processes. Am. J. Phys., 63, 17–32.

Savrda, S. L. (2007). A descriptive framework for the problem-solving experiences of physics students. University of Central Florida Orlando, Florida.

Yavuz, A. (2007). Stratégie de résolution d’exercice en mécanique du point matériel. Stratégie des enseignants et difficultés des étudiants de la première année universitaire: Exemple du problème de la machine d’Atwood (Unpublished Doctoral Dissertation). Université Jospeh Fourier Grenoble 1 France. Retrieved from http://tel.archivesouvertes.fr/tel-00174030/en/

Yavuz, A. (2009). Problem Çözümlerine Prakseolojik Yaklaşım. Türkiye Sosyal Araştırmalar Dergisi, 13(2), 93–106.

Yavuz, A., & Özdemir, G. (2009). Öğretim Elemanlarının Atwood Aleti Problemi Çözüm Stratejilerinin Prakseolojik Analizi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 22(2), 357–377.

Yavuz, A., Temiz, B.K. (2013). MEPÇİS1 (Mekanik Problem Çözümlerini İyileştirme Stratejileri 1): Kinematik algılar ve Newton dinamiği problem çözümleri, Niğde Üniversitesi Bilimsel Araştırma Projesi, EBT/2011-1, Niğde.

Yıldırım, A., & Şimşek, H. (2006). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.